martes, 28 de octubre de 2008

Metodos de datacion




Cronografía de varvas
Es un método estratigráfico que permite establecer medidas de años absolutas. Se basa en el estudio de lagos glaciares, dando medidas absolutas al seguir activos o relativas al haber desaparecido con el tiempo, quedando la huella de su presencia en forma de depósitos sedimentarios. Se estudia la deposición de arcillas y depósitos limosos, dispuestos en estratos. Estos vienen a ser más claros cuando están compuestos por limos y arenas (depositados en verano), y más oscuros y arcillosos, con presencia de residuos orgánicos (depositados en invierno). El conjunto de un estrato de verano y otro de invierno constituye una varva. El número total facilita pues un valor de tiempo total absoluto o relativo. Este procedimiento abarca datos cronométricos de hasta 25.000 años, limitándose a regiones donde se hayan producido dichos estratos (presencia de lagos glaciares).

Dataciones astronómicas
Están basadas en oscilaciones prolongadas de la radiación solar, motivadas por variaciones periódicas de la inclinación del eje de rotación de la Tierra, de la excentricidad de su órbita y del equinoccio. Estas variaciones deben haber alterado las condiciones climáticas del planeta y por tanto se verán reflejadas cronológicamente en el medio, aunque los resultados obtenidos son ambiguos.

Dataciones físico-químicas
Estos son los que aportan los datos más antiguos destacando los métodos de datación radiométrica. Se basan en determinar en las rocas las trazas de elementos radiactivos que contienen. Los elementos químicos se pueden encontrar en la naturaleza bajo distintas formas, todas ellas con el mismo número de protones pero se diferencian en el número de neutrones. La forma más usual es la que conocemos del elemento químico en cuestión, que suele ser más del 95% del total del elemento presente en la naturaleza. Las otras formas son isótopos estables e isótopos radiactivos. Por ejemplo, el carbono conoce su forma elemental 12C, un isótopo estable 13C y un isótopo radiactivo 14C. Las técnicas radiométricas se fundamentan en que un isótopo radiactivo va reduciendo su radiactividad de forma constante a partir del momento de la formación de la roca. El segundo supuesto es que los isótopos radiactivos se desintegran irreversiblemente siguiendo una ecuación exponencial:
dP/dt = -xP (siendo P la cantidad de elementos iniciales durante el tiempo t, x el índice de proporcionalidad propio de cada elemento)
Esta relación implica que la velocidad de desintegración del elemento no es constante. Los periodos de pérdida de radiactividad varían de un isótopo a otro, pero para un mismo elemento tienen valores característicos. Gracias a esto se puede definir el periodo de semidesintegración (vida mitad) como el tiempo necesario para que un elemento reduzca su abundancia radiactiva a la mitad. Este tiempo pudiendo ir desde varios segundos hasta 10.000 millones de años. Gracias a estos productos de semidesintegración se puede determinar la edad absoluta de las rocas que contienen los elementos en cuestión. Los diferentes elementos usados en las dataciones físico-químicas son estos:

El conocido carbono 14, que abarca un espacio máximo de tiempo de 70.000 años.
El método del plomo, sirviéndose de tres series de desintegración, es también muy empleado. Son utilizados los isótopos uranio 238 238U, uranio 235 235U, y torio 232 232Th, todos ellos acaban convirtiéndose en plomo, permitiendo determinar cronologías hasta la era Precámbrica (época a la que también llega el método del hielo).
El método de Potasio-Argón, usando el potasio radiactivo 40K, convirtiéndose en 11% de Ar y 89% de Ca.
El método del Rubidio-Estroncio, se basa en la transformación de 87Rb en 87Sr, emitiendo partículas beta (ß). Estos y otros elementos químicos de la serie de transición se utilizan para cronologías que van desde los 5.000 hasta los 120.000 años.
El método huellas de fisión, se emplea para determinar la edad de micas y feldespatos basándose en un simple recuento de las trazas de desintegración espontánea de núcleos atómicos pesados (como 238U,235U,232U).

Experimento Miller y Urey



El experimento de Miller-Urey representa la primera demostración de que se pueden formar espontáneamente moléculas orgánicas a partir de sustancias inorgánicas simples en condiciones ambientales adecuadas.
En 1953 Stanley L. Miller (1930-2007), un estudiante de doctorado de la Universidad de Chicago propuso a su director Harold Urey, realizar un experimento para contrastar la hipótesis de Aleksandr Oparin y J. B. S. Haldane según la cual en las condiciones de la Tierra primitiva se habían producido reacciones químicas que condujeron a la formación de compuestos orgánicos a partir de inorgánicos, que posteriormente originaron las primeras formas de vida. Urey pensaba que los resultados no serían concluyentes pero finalmente aceptó la propuesta de Miller. Diseñaron un aparato en el que simularon algunas condiciones de la atmósfera de la Tierra primitiva. El experimento consistió, básicamente, en someter una mezcla de metano, amoniaco, hidrógeno y agua a descargas eléctricas de 60.000 voltios. Este experimento dio como resultado la formación de una serie de moléculas orgánicas, entre la que destacan ácido acético, ADP-Glucosa, y los aminoácidos glicina, alanina, ácido glutámico y ácido aspártico,este experimento fue clave para comprobar la teorìa de Oparìn y Haldane usados por las células como los pilares básicos para sintetizar sus proteínas.


En el aparato se introdujo la mezcla gaseosa, el agua se mantenía en ebullición y posteriormente se realizaba la condensación; las sustancias se mantenían a través del aparato mientras dos electrodos producían descargas eléctricas continuas en otro recipiente.
Después que la mezcla había circulado a través del aparato, por medio de una llave se extraían muestras para analizarlas. En éstas se encontraron, como se ha mencionado, varios aminoácidos, un carbohidrato y algunos otros compuestos orgánicos.
El experimento realizado por Miller y Urey indicó que la síntesis de compuestos orgánicos, como los aminoácidos, fue fácil en la Tierra primitiva. Otros investigadores –siguiendo este procedimiento y variando el tipo y las cantidades de las sustancias que reaccionan- han producido algunos componentes simples de los ácidos nucleicos y hasta ATP[cita requerida].
Esta experiencia abrió una nueva rama de la biología, la exobiología. Desde entonces, los nuevos conocimientos sobre el ADN y el ARN, el descubrimiento de condiciones prebióticas en otros planetas y el anuncio de posibles fósiles bacterianos encontrados en meteoritos provenientes de Marte, han renovado la cuestión del origen de la vida.

ley de hardy weinberg

En genética de poblaciones, el principio de Hardy-Weinberg (PHW) (también equilibro de Hardy Weinberg o ley de Hardy-Weinberg), que recibe su nombre de G. H. Hardy y Wilhelm Weinberg, establece que la composición genética de una población permanece en equilibrio mientras no actúe la selección natural ni ningún otro factor y no se produzca ninguna mutación. Es decir, la herencia mendeliana, por sí misma, no engendra cambio evolutivo.
En el lenguaje de la genética de poblaciones, la ley de Hardy-Weinberg afirma que, bajo ciertas condiciones, tras una generación de apareamiento al azar, las frecuencias de los genotipos de un locus individual se fijarán en un valor de equilibro particular. También especifica que esas frecuencias de equilibrio se pueden representar como una función sencilla de las frecuencias alélicas en ese locus. En el caso más sencillo, con un locus con dos alelos A y a, con frecuencias alélicas de p y q respectivamente, el PHW predice que la frecuencia genotípica para el homocigoto dominante AA es p2, la del heterocigoto Aa es 2pq y la del homocigoto recesivo aa, es q2. El principio de Hardy-Weinberg es una expresión de la noción de una población que está en "equilibrio genético", y es un principio básico de la genética de poblaciones.



Suposiciones
Las suposiciones originales del equilibrio de Hardy-Weinberg (EHW) eran que el organismo en consideración:
Sea diploide, y el carácter en consideración no esté en un cromosoma que tiene un número distinto de copias en cada sexo, como el cromosoma X en los humanos (es decir, que el carácter sea autosómico)
Se reproduzca sexualmente, bien monoicamente o dioicamente
Tenga generaciones discretas
Además, la población en consideración está idealizada, esto es:
Existe apareamiento aleatorio en la población
Tiene un tamaño infinito (o lo bastante grande para minimizar el efecto de la deriva genética)
y no experimenta:
Selección
Mutación
Migración (flujo genético)
El primer grupo de suposiciones son un requisito de las matemáticas implicadas. Es relativamente sencillo expandir la definición del EHW para que incluya modificaciones de estas suposiciones, por ejemplo las de los caracteres ligados al sexo. Las otras suposiciones son inherentes al principio de Hardy-Weinberg.
Cuando se discuten varios factores, se utiliza una población de Hardy-Weinberg como referencia. No es sorprendente que estas poblaciones sean estáticas

Derivación
Una mejor, aunque equivalente, descripción probabilística del PHW es que los alelos de la siguiente generación para cualquier individuo se eligen aleatoria e independientemente unos de otros. Consideremos dos alelos A y a con frecuencias en la población de p y q respectivamente. Las distintas maneras de formar nuevos genotipos se pueden derivar utilizando un cuadro de Punnett, por el que la fracción en cada celda es igual al producto de las probabilidades de la fila y la columna.


Estas frecuencias se llaman frecuencias de Hardy-Weinberg (o proporciones de Hardy-Weinberg). Esto se consigue en una generación, y solo hace falta suponer un apareamiento aleatorio en una población de tamaño infinito.
A veces una población se crea juntando machos y hembras con distintas frecuencias alélicas. En este caso, la suposición de una sola población queda violada hasta la siguiente generación, de manera que la primera generación no tendrá equilibrio de Hardy-Weinberg. Las generaciones sucesivas sí tendrán equilibrio de Hardy-Weinberg.



Desviaciones del equilibrio de Hardy-Weinberg


Las violaciones de las suposiciones de Hardy-Weinberg pueden causar desviaciones de los valores esperados. Cómo afecta esto a la población depende de las suposiciones que son violadas.
Apareamiento aleatorio. El PHW establece que la población tendrá las frecuencias genotípicas especificadas (llamadas proporciones de Hardy-Weinberg) tras una generación de apareamiento aleatorio dentro de la población. Cuando suceden violaciones de este requisito, la población no tendrá proporciones de Hardy-Weinberg. Tres de estas violaciones son:
Endogamia, que provoca un aumento de la homocigosidad en todos los genes.
Emparejamiento selectivo, que causa un aumento en la homocigosidad de los genes implicados en el carácter que se está seleccionando para el apareamiento (y de los genes que están en desequilibrio de ligamiento con ellos).
Población de poco tamaño, que causa un cambio aleatorio en las frecuencias genotípcas, especialmente si la población es muy pequeña. Esto es debido al efecto de muestreo, y se llama deriva genética.
Las demás suposiciones afectan a las frecuencias alélicas, pero no afectan por sí mismas al apareamiento aleatorio. Si una población viola alguna de estas, la población seguirá teniendo proporciones de Hardy-Weinberg en cada generación, pero las frecuencias alélicas cambiarán con esa fuerza.
La selección, en general, hace que cambien las frecuencias alélicas, a menudo con mucha rapidez. Aunque la selección direccional conduce finalmente a la pérdida de todos los alelos excepto el favorecido, algunas formas de selección, como la selección estabilizadora, conducen a un equilibrio sin pérdida de alelos.
La mutación tendrá un efecto muy sutil en las frecuencias alélicas. Los ritmos de mutación son del orden de 10-4 a 10-8 y el cambio en las frecuencias alélicas será, como mucho, del mismo orden. Las mutaciones recurrentes mantendrán a los alelos en la población, aunque haya una fuerte selección en contra de ellos.
La migración enlaza genéticamente dos o más poblaciones. En general, las frecuencias alélicas se harán más homogéneas entre las dos poblaciones. Algunos modelos de migración incluyen inherentemente el apareamiento no aleatorio (el efecto Wahlund, por ejemplo). Para esos modelos, las propociones de Hardy-Weinberg no serán válidas en general.
Más adelante se explica cómo afectan estas violaciones a las pruebas estadísticas formales del EHW.
Desafortunadamente, las violaciones de las suposiciones del principio de Hardy-Weinberg no significa que la población violará el EHW. Por ejemplo, la selección estabilizadora conduce a una población en equilibrio con proporciones de Hardy-Weinberg. Esta propiedad que enfrenta a la selección con la mutación es la base de muchas estimaciones del ritmo de mutación (equilibrio mutación-selección).

el interesante origen de los eucariotas




Hay varias propuestas e hipótesis de las que actualmente la más ámpliamente aceptada es la denominada hipótesis de los simbiontes (hipótesis endosimbiótica). Según la misma, los orgánulos provistos de ADN de los eucariotas (mitocondrios y plastos) se habrían originado a partir de procariotas que vivían libremente y que, probablemente por fagocitosis (mecanismo bastante frecuente entre los protozoos para su nutrición), se introdujeron en las células de eucariotas primitivos como simbiontes intracelulares. Las células fagocitadas quedan rodeadas por una doble membrana en el plasma de la célula depredadora. Esta doble membrana corresponde: su parte interna a la membrana plasmática de la célula depredadora para rodear a la célula fagocitada. Tras la fagocitosis, las partículas alimenticias absorbidas suelen ser digeridas por los lisosomas, formándose vacuolas digestivas, pero en algunos casos las células fagocitadas sobreviven en la célula depredadora en forma de simbiontes o parásitos, pudiendo incluso multiplicarse en ella. Así se originará los plastos y mitocondrios limitados por una doble membrana.


Según la hipótesis endosimbiótica (hoy día tan fundamentada en datos que ya se le reconoce el rango de teoría), formulada inicialmente por Andreas Franz Wilhelm Schimper en 1883, las diferentes estructuras y orgánulos de los eucariotas se habrían originado tal como sigue:
Los mitocondrios de los eucariotas tienen su origen en eubacterias, antiguamente de vida libre, que respiraban y poseían su propio ADN.
Los plastidios de los eucariotas tienen su origen en proclorófitos (cloroxibacterias) o cianófitos (cianobacterias).
Las membranas dobles de los mitocondrios y plastidios corresponden, las externas a las membranas fagocíticas de las vacuolas y las internas a las plasmáticas de las células procarióticas fagocitadas.
Los procariotas (protocitos) son los hipotéticos organismos en cuyas células se introdujeron los procariotas que posteriormente dieron origen a los orgánulos celulares provistos de ADN. Por tanto, sus células carecerían de plastos y de mitocondrios aunque presentarían ya las características esenciales de las células eucarióticas. Algunos indicios llevan a suponer que los protocariotas han evolucionado a partir del grupo de arquebacterias.
La hipótesis endosimbiótica no se pronuncia sobre ciertos cambios, que debieron de tener lugar al mismo tiempo que la aparición de los orgánulos celulares mencionados, como son, entre otros, la creación del núcleo, la aparición de cromosomas o la capacidad de realizar la mitosis y meiosis. No obstante, esta hipótesis ha tenido una enorme difusión y ha arrojado cierta luz acerca de la aparición de los actuales organismos, en la que intervendrían no sólo fenómenos de mutación y/o recombinación genética, sino también la formación esporádica de endosimbiosis estables.
Los hechos a favor de la hipótesis o teoría endosimbiótica, se puede desglosar en los siguientes apartados:
*La capacidad de multiplicación independiente de plastidios y mitocondrios.
*La estructura de la membrana externa de una célula eucariótica es distinta de las de los plastidios y mitocondrios.
*Mitoconcrios y plastidios tienen su propio ADN (distinto al del núcleo), el cual, con su forma filamentosa, correspondería a las moléculas circulares de ADN de los procariotas recientes.

Poliploidia

La poliploidía es un incremento del número de cromosomas característico del complemento diploide; por ejemplo, la no disyunción de los cromosomas en la meiosis lleva a la aparición de individuos (4n), los cuales estarán aislados reproductivamente de la especie, a pesar de poder reproducirse sexualmente.
La poliploidía se produce por irregularidades de la meiosis: en la primera división (profase), cuando los cromosomas homólogos se aparean para formar tétradas, y no se separan durante la anafase I; esto origina una célula con todo el complemento cromosómico y la otra con ninguno, donde la primera pasa por la segunda división meiótica y produce gametos diploides. Por lo tanto si este gameto se une con otro normal producirá un cigoto triploide (estéril).
clasificación:
Euploidía
Es la alteración numérica en la dotación total de los cromosomas.
Se clasifica en:

Monoploide
Organismo que contiene solo un complemento del juego básico de cromosomas de la especie, se expresa como n ó x. Se presenta en organismos inferiores, como en los hongos, en abejas y avispas machos; en plantas por lo general da lugar a organismos estériles.

Triploide
Los triploides son individuos que poseen tres juegos completos de cromosomas (3n). Pueden surgir por diversos medios. Si ocurren alteraciones en la meiosis normal de un indiduo diploide, por ejemplo, se pueden formar gametos diploides (también llamados "gametos no reducidos") que pueden ser fecundados por gametos haploides de la misma especie, dando lugar a un autotriploide (3n). Los triploides son bastante raros ya que, si bien pueden ser viables, como ocurre en la mayoría de las plantas, son generalmente estériles debido a la formación de gametos defectuosos. Esto se debe a que el apareamiento y la migración de los cromosomas homólogos durante la meiosis no es el normal lo que determina la separación de los cromosomas de los tres juegos o dotaciones ocurra al azar, con la consiguiente formación de núcleos con un complemento cromosómico desequilibrado. Este desequilibrio describe el hecho de que, para cada par de cromosomas homólogos de la especie en cuestión, un triploide producirá gametos que lleven dosis múltiples de cromosomas o bien, gametos deficientes para uno o más cromosomas. Debido a que el desarrollo de los gametos (y de los cigotos que surgen por fusión de los mismos) depende del tipo y de la cantidad apropiada de información genética, los gametos con exceso o defecto en el número de cromosomas tendrán un serio impedimento en su desarrollo y, por ende, los individuos que los producen serán altamente estériles.
Tetraploides
Individuo que posee cuatro juegos de cromosomas (4n). La duplicación se lleva a cabo con compuestos químicos, como el alcaloide llamado colchicina. se forma cuando se unen dos gametos diploídes de la misma especie.
Ejemplos: variedades de manzana, cerezas, peras, sandías, zarzamoras y trigo. En el caso de manzanas, cerezas y peras, al aparecer como tetraploídes dan origen a frutos más grandes para su comercialización.

Autotetraploides
Individuos que poseen cuatro juegos de cromosomas homólogos completos(4n). Son fértiles cuando se producen gametos equilibrados, formándose cuando se unen dos gametos no reducidos de individuos pertenecientes a la misma especie.

Especiación por poliploidía

Alotetraploides
Individuos que poseen cuatro juegos de cromosomas no homólogos (4n). Por lo general son fértiles, se forman al unirse dos gametos diploídes de dos especies diferentes. El caso más importante es el Triticale; este cereal es un híbrido alotetraploide de trigo (Triticum sativum) y centeno (Secale cereale).
Aneuploidía
(ANEU=IMPAR; PLOIDIA=UNIDAD). Son organismos cuyo número de cromosomas no es múltiplo del número básico del grupo.
Se dividen en:

Nulosómicos
Se presenta cuando un organismo ha perdido un par de cromosomas (se presenta como 2n – 2). Es mortal para los diploídes; en poliploídes se pueden perder dos cromosomas homólogos de un grupo y sobreviven; en trigo hexaploide (6n – 2) se manifiesta con reducción de vigor y fertilidad y sobreviven hasta la madurez.

Monosómicos
Se presenta en organismos diploídes cuando pierden un cromosoma de un par (2n – 1). Se manifiesta con una alta mortalidad o reducción de la fertilidad.

Trisómico
Lo presentan individuos diploídes que poseen un cromosoma extra (2n+1); es decir, uno de los pares de cromosomas tiene un miembro extra. Esto produce diferentes fenotipos; en humanos la presencia de un pequeño cromosoma extra produce el síndrome de Down (se presenta cuando en el par 21 del óvulo o espermatozoide no se separan y estos contienen 24 cromosomas en lugar de 23, cuando uno de estos se aparea con otro del sexo contrario y normal, dará individuos de 47 cromosomas). Esto se presenta como un accidente en el complejo proceso meiótico; el individuo con este síndrome difiere en aspectos físicos e intelectuales de individuos normales.

Doble Trisómico
Se produce cuando cada uno de dos cromosomas diferentes se presenta por triplicado, representándose como (2n+1+1).

Tetrasómico
Se presenta por multiplicado un cromosoma de un organismo diploide, representado como (2n+2).

Teoria endosimbiotica



La teoría endosimbiótica postula que algunos orgánulos propios de las células eucariotas, especialmente plastos y mitocondrias, habrían tenido su origen en organismos procariotas que después de ser englobados por otro microorganismo habrían establecido una relación endosimbiótica con éste. Se especula con que las mitocondrias provendrían de protebacterias alfa (por ejemplo, rickettsias) y los plastos de cianobacterias.

La teoría endosimbiótica fue popularizada por Lynn Margulis en 1967,con el nombre de endosimbiosis serie, quien describió el origen simbiogenético de las células eucariotas.También se conoce por el acrónimo inglés SET (Serial Endosymbiosis Theory). En su libro de 1981, Symbiosis in Cell Evolution,Margulis sostiene que las células eucariotas se originaron como comunidades de entidades que obraban recíprocamente y que terminaron en la fusión de varios organismos. En la actualidad, se acepta que las mitocondrias y los cloroplastos de los eucariontes procedan de la endosimbiosis. Pero la idea de que una espiroqueta endosimbiótica se convirtiera en los flagelos y cilios de los eucariontes no ha recibido mucha aceptación, debido a que estos no muestran semejanzas ultraestructurales con los flagelos de los procariontes y carecen de ADN.
Primera incorporación simbiogenética: Una bacteria consumidora de azufre, que utilizaba el azufre y el calor como fuente de energía (arquea fermentadora o termoacidófila), se fusionó con una bacteria nadadora (espiroqueta) pasando a formar un nuevo organismo sumando sus características iniciales de forma sinérgica (en la que el resultado de la incorporación de dos o más unidades adquiere mayor valor que la suma de sus componentes). El resultado fue el primer eucarionte (unicelular eucariota) y ancestro único de todos los pluricelulares. El núcleoplasma de la células de animales, plantas y hongos sería el resultado de la unión de estas dos bacterias.
Segunda incorporación simbiogenética:Este nuevo organismo todavía era anaeróbico, incapaz de metabolizar el oxígeno, ya que este gas suponía un veneno para él, por lo que viviría en medios donde este oxigeno, cada vez más presente, fuese escaso. En este punto, una nueva incorporación dotaría a este primigenio eucarionte de la capacidad para metabolizar oxigeno. Este nuevo endosombionte, originariamente bacteria respiradora de oxigeno de vida libre, se convertiría en las actuales mitocondrias y peroxisomas presentes en las células eucariotas de los pluricelulares, posibilitando su éxito en un medio rico en oxígeno como ha llegado a convertirse el planeta Tierra. Los animales y hongos somos el resultado de esta segunda incorporación.
Tercera incorporación simbiogenética:Esta tercera incorporación originó el Reino vegetal, las recientemente adquiridas células respiradoras de oxígeno fagocitarían bacterias fotosintéticas y algunas de ellas, haciéndose resistentes, pasarían a formar parte del organismo, originando a su vez un nuevo organismo capaz de sintetizar la energía procedente del Sol. Estos nuevos pluricelulares, las plantas, con su éxito, contribuyeron y contribuyen al éxito de animales y hongos.

martes, 21 de octubre de 2008

Cambio ambiental vs evolución




El cambo ambiental global es el conjunto de transformaciones biofísicas de las superficies terrestres, los océanos y la atmósfera conducidas por actividades humanas y procesos naturales. Dichas transformaciones tienen lugar en el ámbito local, regional y global y afectan la calidad de vida humana y el desarrollo sostenible en la más amplia escala.

Diversos procesos de cambio ambiental global se están desarrollando en forma concurrente y manifestándose de manera más o menos simultánea a lo largo y ancho del planeta: el calentamiento global y el consecuente cambio climático, la desertificación, el incremento de las migraciones, la transformación industrial, cambios en el uso del suelo, en la cubierta terrestre, en seguridad alimentaria, la disponibilidad de agua dulce, el riesgo, la vulnerabilidad, la capacidad de adaptación, etc.
Es este el punto donde se afecta la evolucion de cualquier materia viva en el mundo ya que por medio de la compleja problemática condicionada, fundamentalmente, por la diversidad de procesos que componen el mismo, la multiplicidad de aspectos que deben ser considerados (biofísicos, económicos, sociales, ambientales, institucionales, culturales, etc.) y las interacciones entre los mismos y con su entorno, en el cual la dimensión humana constituye el principal factor determinante.